1 of 2

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. 1 3 4

Sixth Semester B.E. Degree Examination, June 2012 Data Compression

Time: 3 hrs.

USN

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART – A

- a. Distinguish between lossless compression and lossy compression. (04 Marks)
 b. Define i(A), the self information associated with an event A. If A and B are independent events, prove that i(AB) = i(A) + i(B). (04 Marks)
 c. Let C be a code with N code words whose lengths are l₁, l₂, l₃,...., l_N. If C is uniquely decodable, prove that ∑^N_{i=1} 2^{-li} ≤ 1. (08 Marks)
 d. Determine whether the following codes are uniquely decodable:
 - d. Determine whether the following codes are uniquely decodable:
 i) {0,01,110,111}
 ii) {0,01,11,111}.
- 2 a. Design a minimum variance Huffman code for a source whose letters are chosen from the alphabet A = $\{a_1, a_2, a_3, a_4, a_5\}$ with $p(a_1) = 0.3$, $p(a_2) = 0.16$, $p(a_3) = 0.12$, $p(a_4) = 0.205$ and $p(a_5) = 0.17$. Verify Kraft-Mc Millan inequality. (10 Marks)
 - b. Encode the following sequence using LZW algorithm:
 x y z z y b x y z z y b x y z z y b x y z z y b x l l b x l l b x l l b x l l.
 The alphabet for the source is {b, l, x, y, z}. The LZW dictionary initially looks as follows:

Index	1	2	3	4	5
Entry	X	У	Z	l	Х

(10 Marks)

- 3 a. Give an algorithm used by CALIC to form the initial prediction and explain this algorithm. (06 Marks)
 - b. Briefly explain run-length coding. (04 Marks)
 c. Explain quantization problem by considering a quantizer with eight reconstruction values. (06 Marks)
 d. Explain distortion criterion. (04 Marks)
 - a. With a neat diagram, explain vector quantization procedure. (06 Marks)
 b. Give Lloyd algorithm to generate pdf-optimized scalar quantizer assuming that the distribution is known. Show how this algorithm can be generalized to the case where a training set is available. (07 Marks)
 - c. With an example, explain how basic differential encoding algorithm works. (07 Marks)

Max. Marks:100

(04 Marks)

06CS/IS663

PART – B

5	a.	With all necessary mathematical details, discuss discrete Fourier transform and	device the			
		expression $f_n = \frac{1}{N} \sum_{K=0}^{N-1} F_k e^j \frac{2\pi kn}{N}$.	(10 Marks)			
	b.	Obtain the inverse Z-transform of the function $F(z) = \frac{2z^4 + 1}{2z^3 - 5z^2 + 4z - 1}$.	(10 Marks)			
6	a.	a. By considering the example of encoding the sequence of values $\{x_n\}$ given below				
		detail how subband coding works.	(08 Marks)			
	b.	Define the following terms: i) Filter ii) Finite impulse response (FIR) filters	(00 1/11/185)			
		iii) Number of taps in the filter.				
		iv) Infinite impulse response (IIR) filters.	(04 Marks)			
	c.	Consider a filter with $a_0 = 1$ and $b_1 = 0.6$. If the input sequence $\{x_n\}$ is	given by			
		$x_n = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$, determine the impulse response of the filter. Is it an FIR filte	r or an IIR			
		filter?	(04 Marks)			
	d.	Briefly explain bit allocation.	(04 Marks)			
7	a. b.	With necessary details, derive multiresolution analysis. With necessary details and usual notations, derive the following:	(08 Marks)			
		i) $\sum_{k} h_{k} = \sqrt{2}$				
		ii) $\sum_{k} h_{k}^{2} = 1$				
		iii) $\sum_{k} h_{k} h_{k-2m} = \delta m$	(12 Marks)			
8		Explain the following:				
	a.	Motion compensation.	(07 Marks)			
	b.	Video signal representation.	(07 Marks)			
	C.	Model Dascu Coullig.	(UO MIARKS)			

* * * * *